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Abstract
This paper provides an introduction to p-mechanics, which is a consistent
physical theory suitable for a simultaneous description of classical and quantum
mechanics. p-mechanics naturally provides a common ground for several
different approaches to quantization (geometric, Weyl, coherent states, Berezin,
deformation, Moyal, etc) and has a potential for expansions into field and
string theories. The backbone of p-mechanics is solely the representation
theory of the Heisenberg group.

PACS numbers: 03.65.Fd, 02.20.Bb, 02.20.Qs
Mathematics Subject Classification: 81R05, 81R15, 22E27, 22E70, 43A65

1. Introduction

This paper describes how classical and quantum mechanics are naturally combined within
a construction based on the Heisenberg group H

n and the complete set of its unitary
representations. There is a dynamic equation (4.9) on H

n which generates both Heisenberg
(4.10) and Hamilton (4.11) equations and corresponding classical and quantum dynamics.
The standard assumption that observables constitute an algebra, which is discussed in [24, 26]
and elsewhere, is not necessary for setting up a valid quantization scheme.

The outline of the paper is as follows. In the next section we recall the representation
theory of the Heisenberg group based on the orbit method of Kirillov [21] utilizing Fock–
Segal–Bargmann spaces [11, 15]. We emphasize the existence and usability of the family of
one-dimensional representations: they play for classical mechanics exactly the same role as
infinite dimensional representations do for quantum mechanics. In section 3 we introduce the
concept of observables in p-mechanics and describe their relations with quantum and classical
observables. These links are provided by the representations of the Heisenberg group and
wavelet transforms. In section 4 we study p-mechanical brackets and the associated dynamic
equation together with its classical and quantum representations. In conclusion we derive the
symplectic invariance of dynamics from automorphisms of H

n.
1 On leave from the Odessa University.
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The notion of physical states in p-mechanics is introduced in subsequent publications
[6, 7]; the p-mechanical approach to quantized fields is sketched in [28] with some further
papers to follow.

2. The Heisenberg group and its representations

We start from the representation theory of the Heisenberg group H
n based on the orbit method

of Kirillov. Analysis of the unitary dual of H
n in section 2.2 suggests that the family of

one-dimensional representations of H
n forms the phase space of a classical system. Infinite

dimensional representations in the Fock type space are described in section 2.3.

2.1. Representations H
n and method of orbit

Let (s, x, y), where x, y ∈ R
n and s ∈ R, be an element of the Heisenberg group H

n [11, 15].
We assign physical units to coordinates on H

n. Let M be the unit of mass, L that of length and
T that of time, we then adopt the following.

Convention 2.1.

(1) Only physical quantities of the same dimension can be added or subtracted.
(2) Therefore mathematical functions, e.g. exp(u) = 1 + u + u2/2! + · · · or sin(u), can be

naturally constructed out of a dimensionless number u only. Thus Fourier dual variables,
say x and q, should posses reciprocal dimensions because they have to form the expression
eixq .

(3) We assign to x and y components of (s, x, y) physical units 1/L and T/(LM) respectively.

Convention 2.1.3 is the only a priori assumption which we made about physical
dimensions and it will be justified a posteriori as follows. From 2.1.2 we need dimensionless
products qx and py in order to get the exponent in (2.15), where q and p represent the classical
coordinates and momenta (in accordance with the main observation of p-mechanics). All
other dimensions will be assigned strictly in agreement with the conventions 2.1.1 and 2.1.2.

The group law on H
n is given as follows:

(s, x, y) ∗ (s ′, x ′, y ′) = (
s + s ′ + 1

2ω(x, y; x ′, y ′), x + x ′, y + y ′) (2.1)

where the non-commutativity is solely due to ω—the symplectic form [2, section 37] on the
Euclidean space R

2n:

ω(x, y; x ′, y ′) = xy ′ − x ′y. (2.2)

Consequently the parameter s should be measured in T/(L2M)—the product of units of x and
y. The Lie algebra hn of H

n is spanned by the basis S,Xj , Yj , j = 1, . . . , n, which may be
represented by either left- or right-invariant vector fields on H

n:

Sl(r) = ± ∂

∂s
X

l(r)
j = ± ∂

∂xj

− yj

2

∂

∂s
Y

l(r)
j = ± ∂

∂yj

+
xj

2

∂

∂s
. (2.3)

These fields satisfy the Heisenberg commutator relations expressed through the Kronecker
delta δi,j as follows:[

X
l(r)
i , Y

l(r)
j

] = δi,j S
l(r) (2.4)

and all other commutators (including those between a left and a right field) vanish. Units to
measure Sl(r), X

l(r)
j and Y

l(r)
j are inverse to s, x, y—i.e. L2M/T,L and LM/T respectively—

which are obviously compatible with (2.4).
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The exponential map exp : hn → H
n which obeys the multiplication (2.1) and Heisenberg

commutators (2.4) is provided by

exp : sS +
n∑

j=1

(xjXj + yjYj ) �→ (s, x1, . . . , xn, y1, . . . , yn).

The composition of the exponential map with representations (2.3) of hn by the left (right)-
invariant vector fields produces the right (left) regular representation λr(l) of H

n by right (left)
shifts. Linearized [19, section 7.1] to L2(H

n) they are

λr(g) : f (h) �→ f (hg) λl(g) : f (h) �→ f (g−1h) where f (h) ∈ L2(H
n). (2.5)

As any group H
n acts on itself by the conjugation automorphisms A(g)h = g−1hg, which

fix the unit e ∈ H
n. The differential Ad : hn → hn of A at e is a linear map which can

be differentiated again to the representation Ad of the Lie algebra hn by the commutator:
ad(A) : B �→ [B,A]. The adjoint space h∗

n of the Lie algebra hn can be realized by the
left-invariant first order differential forms on H

n. By the duality between hn and h∗
n the map

Ad generates the co-adjoint representation [19, section 15.1] Ad∗ : h∗
n → h∗

n:

Ad∗(s, x, y) : (h, q, p) �→ (h, q + hy, p − hx) where (s, x, y) ∈ H
n (2.6)

and (h, q, p) ∈ h∗
n in biorthonormal coordinates to the exponential ones on hn. These

coordinates h, q, p should have units of an action ML2/T , coordinates L and momenta
LM/T correspondingly. Again nothing in (2.6) violates the convention 2.1.

There are two types of orbits for Ad∗ (2.6): isomorphic to Euclidean spaces R
2n and

single points:

Oh = {(h, q, p) : for a fixed h �= 0 and all (q, p) ∈ R
2n} (2.7)

O(q,p) = {(0, q, p) : for a fixed (q, p) ∈ R
2n}. (2.8)

The orbit method of Kirillov [19, section 15, 21] starts from the observation that the above
orbits parametrize all irreducible unitary representations of H

n. All representations are induced
[19, section 13] by the character χh(s, 0, 0) = e2π ihs of the centre of H

n generated by
(h, 0, 0) ∈ h∗

n and shifts (2.6) from the ‘left-hand side’ (i.e. by g−1) on orbits. Using
[19, section 13.2, prob. 5] we get a neat formula, which (unlike some others in the literature,
e.g. [33, chapter 1, (2.23)]) obeys convention 2.1 for all physical units:

ρh(s, x, y) : fh(q, p) �→ e−2π i(hs+qx+py)fh

(
q − h

2
y, p +

h

2
x

)
. (2.9)

Exactly the same formula is obtained if we apply the Fourier transform ˆ : L2(H
n) → L2(h

∗
n)

given by

φ̂(F ) =
∫

hn

φ(exp X) e−2π i〈X,F 〉 dX where X ∈ hn F ∈ h∗
n (2.10)

to the left regular action (2.5); see [21, section 2.3] for relations of the Fourier transform (2.10)
and the orbit method.

The derived representation dρh of the Lie algebra hn defined on the vector fields (2.3) is

dρh(S) = −2π ihI dρh(Xj ) = h

2
∂pj

− 2π iqj I dρh(Yj ) = −h

2
∂qj

− 2π ipjI

(2.11)
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which clearly represents the commutation rules (2.4). The representation ρh (2.9) is reducible
on the whole of L2(Oh) as can be seen from the existence of the set of ‘right-invariant’, i.e.
commuting with (2.11), differential operators:

dρr
h(S) = 2π ihI dρr

h(Xj ) = −h

2
∂pj

− 2π iqj I dρr
h(Yj ) = h

2
∂qj

− 2π ipjI

(2.12)

which also represent the commutation rules (2.4).
To obtain an irreducible representation defined by (2.9), we need to restrict it to a subspace

of L2(Oh) where operators (2.12) act as scalars, e.g. use a polarization from the geometric
quantization [35]. For h > 0 consider the vector field −Xj + iciYj from the complexification
of hn, where the constant ci has the dimension T/M in order to satisfy convention 2.1, the
numerical value of ci in given units can be assumed 1. We introduce operators D

j

h, 1 � j � n,
representing vectors −Xj + iciYj :

D
j

h = dρr
h(−Xj + iciYj ) = h

2

(
∂pj

+ cii∂qj

)
+ 2π(cipj + iqj )I = h∂z̄j

+ 2πzj I (2.13)

where zj = cipj + iqj . For h < 0 we define D
j

h = dρr
h(−ciYj + iXj). Operators (2.13) are

used to give the following classical result in terms of orbits.

Theorem 2.2 (Stone–von Neumann, cf [11, chapter 1, section 5], [19, section 18.4]). All
unitary irreducible representations of H

n are parametrized up to equivalence by two classes
of orbits (2.7) and (2.8) of co-adjoint representation (2.6) in h∗

n:

(1) The infinite dimensional representations by transformation ρh (2.9) for h �= 0 in Fock
[11, 15] space F2(Oh) ⊂ L2(Oh) of null solutions to the operators D

j

h (2.13),

F2(Oh) = {
fh(q, p) ∈ L2(Oh)

∣∣Dj

hfh = 0, 1 � j � n
}
. (2.14)

(2) The one-dimensional representations as multiplication by a constant on C = L2(O(q,p))

which drop out from (2.9) for h = 0,

ρ(q,p)(s, x, y) : c �→ e−2π i(qx+py)c (2.15)

with the corresponding derived representation

dρ(q,p)(S) = 0 dρ(q,p)(Xj ) = −2π iqj dρ(q,p)(Yj ) = −2π ipj . (2.16)

2.2. Structure and topology of the unitary dual of H
n

The structure of the unitary dual object to H
n—the collection of all different classes of unitary

irreducible representations—as it appears from the method of orbits is illustrated by figure 1,
cf [20, chapter 7, figures 6 and 7]. The adjoint space h∗

n is sliced into ‘horizontal’ hyperplanes.
A plane with a parameter h �= 0 forms a single orbit (2.7) and corresponds to a particular class
of unitary irreducible representation (2.9). The plane with parameter h = 0 is a family of
one-point orbits (0, q, p) (2.8), which produces one-dimensional representations (2.15). The
topology on the dual object is the factor topology inherited from the adjoint space h∗

n under
the above identification, see [21, section 2.2].

Example 2.3. A set of representations ρh (2.9) with h → 0 is dense in the whole family
of one-dimensional representations (2.15), as can be seen either from figure 1 or analytic
expressions (2.9) and (2.15) for those representations.
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h < 0

q
p

R 2nh = 0

h

The adjoint space hn of the algebra hn

h > 0

q
p

The unitary dual of n

Phase space (h = 0)

Parameter h �= 0

R 2n

Figure 1. The structure of a unitary dual object to H
n appearing from the method of orbits.

The space h∗
n is sliced into ‘horizontal’ hyperplanes. Planes with h �= 0 form single orbits and

correspond to different classes of unitary irreducible representation. The plane h = 0 is a family
of one-point orbits (0, q, p), which produce one-dimensional representations. The topology on
the dual object is the factor topology inherited from the h∗

n [21, section 2.2].

Non-commutative representations ρh, h �= 0 (2.9) are known to be connected with
quantum mechanics [11] from its origin. This explains, for example, the name of the
Heisenberg group. In contrast, commutative representations (2.15) are mostly neglected and
only mentioned for the sake of completeness in some mathematical formulations of the Stone–
von Neumann theorem. The development of p-mechanics started [23] from the observation
that the union of all representations ρ(q,p), (q, p) ∈ R

2n naturally acts as the classical phase
space. The sensibility of the single union

O0 =
⋃

(q,p)∈R
2n

O(q,p) (2.17)

rather than an unrelated set of disconnected orbits manifests itself in several ways:

(1) The topological position of O0 as the limiting case (cf example 2.3) of quantum
mechanics for h → 0 realizes the correspondence principle between quantum and
classical mechanics.

(2) Symplectic automorphisms of the Heisenberg group (see section 4.3) produce the
metaplectic representation in quantum mechanics and transitively act by linear
symplectomorphisms on the whole set O0 \ {0}.

(3) We got the Poisson brackets (4.7) on O0 from the same source (4.2) that leads to the
correct Heisenberg equation in quantum mechanics.

The identification of O0 with the classical phase space justifies q and p being measured
by the units of length and momentum respectively, which supports our choice of units for x
and y in convention 2.1.3.

Remark 2.4. Since unitary representations are classified up to a unitary equivalence, one may
think that their explicit realizations in particular Hilbert spaces are ‘the same’. However, a
suitable form of representation can give many technical advantages. The classical illustration
is the paper [15], where comparison of the (unitary equivalent!) Schrödinger and Fock
representations of H

n is the principal tool of investigation.

Our form (2.9) of representations of H
n given in theorem 2.2 has at least the two following

advantages, which are rarely combined together:
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(1) There is an explicit physical meaning of all entries in (2.9) as will be seen below. In
contrast, formula (2.23) in [33, chapter 1] contains terms

√
h (in our notation), which

could hardly be justified from a physical point of view.
(2) The one-dimensional representations (2.15) explicitly correspond to the case h = 0

in (2.9). The Schrödinger representation (the most used in quantum mechanics!) is
handicapped in this sense: a transition h → 0 from ρh in the Schrödinger form to ρ(q,p)

requires a long discussion [20, ex. 7.11].

We finish the discussion of the unitary dual of H
n by a remark about negative values of h.

According to the Heisenberg equation (4.10), a negative value of h̄ reverses the flow of time.
Thus representations ρh with h < 0 seem to be suitable for a description of anti-particles.
There is explicit (cf figure 1) mirror symmetry between matter and anti-matter through classical
mechanics. In this paper however we will consider only the case of h > 0.

2.3. Fock spaces F2(Oh) and coherent states

Our Fock type spaces (2.14) are not very different [25, ex. 4.3] from the standard Segal–
Bargmann spaces.

Definition 2.5 [11, 15]. The Segal–Bargmann space (with a parameter h > 0) consists of
functions on C

n which are holomorphic in z, i.e. ∂z̄j
f (z) = 0, and square integrable with

respect to the measure e−2|z|2/h dz on C
n:∫

C
n

|f (z)|2 e−2|z|2/h dz < ∞.

Noting the ∂z̄j
component in the operator D

j

h (2.13), we obviously obtain the following
proposition.

Proposition 2.6. A function fh(q, p) is in F2(Oh) (2.14) for h > 0 if and only if the function
fh(z) e|z|2/h, z = p + iq, is in the classical Segal–Bargmann space.

The space F2(Oh) can also be described in the language of coherent states (also known
as wavelets, matrix elements of representation, Berezin transform, etc, see [1, 25]). Since the
representation ρh is irreducible, any vector v0 in F2(Oh) is cyclic, i.e. vectors ρh(g)v0 for all
g ∈ G span the whole space F2(Oh). Even though all vectors are equally good in principle,
some of them are more suitable for particular purposes (cf remark 2.4). For the harmonic
oscillator the preferred vector is the dimensionless vacuum state:

v0(q, p) = exp

(
−2π

h

(
c−1

i q2 + cip
2
))

(2.18)

which corresponds to the minimal level of energy. Here ci as was defined before (2.13) has
the dimensionality T/M . One can check directly the validity of both equation (2.14) and
convention 2.1 for (2.18), particularly that the exponent is taken from a dimensionless pure
number. Note also that v0(q, p) is destroyed by the annihilation operators (cf (2.11) and
(2.13)):

A
j

h = dρh(Xj + iciYj ) = h

2

(
∂pj

− ici∂qj

)
+ 2π(cipj − iqj )I. (2.19)

We introduce a dimensionless inner product on F(Oh) by the formula

〈f1, f2〉 =
(

4

h

)n ∫
R

2n

f1(q, p)f̄ 2(q, p) dq dp (2.20)
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With respect to this product the vacuum vector (2.18) is normalized: ‖v0‖ = 1. For any
observable A the formula

〈Av0, v0〉 =
(

4

h

)n ∫
R

2n

Av0(q, p)v̄0(q, p) dq dp

gives an expectation in units of A since both the vacuum vector v0(q, p) and the inner
product (2.20) are dimensionless. The term h−n in (2.20) not only normalizes the vacuum
and fixes the dimensionality of the inner product but is also related to the Plancherel measure
[11, (1.61)] and [33, chapter 1, theorem 2.6] on the unitary dual of H

n.
Elements (s, 0, 0) of the centre of H

n trivially act in the representation ρh (2.9) as
multiplication by scalars, e.g. any function is a common eigenvector of all operators ρh(s, 0, 0).
Thus the essential part [25, definition 2.5] of the operator ρh(s, x, y) is determined solely by
(x, y) ∈ R

2n. The coherent states v(x,y)(q, p) are ‘left shifts’ of the vacuum vector v0(q, p)

by operators (2.9):

v(x,y)(q, p) = ρh(0, x, y)v0(q, p)

= exp

(
−2π i(qx + py) − 2π

h

(
c−1

i

(
q − h

2
y

)2

+ ci

(
p +

h

2
x

)2
))

. (2.21)

Now any function from the space F2(Oh) can be represented [25, ex. 4.3] as a linear
superposition of coherent states:

f (q, p) = [Mhf̆ ](q, p) = hn

∫
R

2n

f̆ (x, y)v(x,y)(q, p) dx dy

= hn

∫
R

2n

f̆ (x, y)ρh(x, y) dx dy v(0,0)(q, p) (2.22)

where f̆ (x, y) is the wavelet (or coherent state) transform [1, 25] of f (q, p):

f̆ (x, y) = [Whf ](x, y) = 〈f, v(x,y)〉F2(Oh)

=
(

4

h

)n ∫
R

2n

f (q, p)v̄(x,y)(q, p) dq dp. (2.23)

Formula (2.22) can be regarded [25] as the inverse wavelet transform M of f̆ (x, y). Note
that all the above integrals are dimensionless, thus both the wavelet transform and its inverse
are measured in the same units.

The straightforward use of the basic formula∫ ∞

−∞
exp(−ax2 + bx + c) dx =

√
π

a
exp

(
b2

4a
+ c

)
where a > 0 (2.24)

for the wavelet transform (2.22) leads to

v̆0(s, x, y) = exp 2π

(
ihs − h

4

(
cix

2 + c−1
i y2

))
. (2.25)

Since [25, proposition 2.6] the wavelet transform Wh (2.22) intertwines ρh (2.9) with the left
regular representation λl (2.5):

Wh ◦ ρh(g) = λl(g) ◦ Wh for all g ∈ H
n

the image of an arbitrary coherent state is

v̆(s ′,x ′,y ′)(s, x, y) = exp 2π

(
ih

(
s − s ′ − 1

2
(x ′y − xy ′)

)
− h

4

(
ci(x − x ′)2 + c−1

i (y − y ′)2
))

. (2.26)

Needless to say, these functions obey convention 2.1.
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We should mention however a problem related to coherent states (2.21): all their ‘classical
limits’ for h → 0 are functions with supports in neighbourhoods of (0, 0). In contrast we may
wish they are supported around different classical states (q, p). This difficulty can be resolved
through a replacement of the group action of H

n in (2.21) by the ‘shifts’ (4.8) generated by
the p-mechanical brackets (4.3).

3. p-mechanics: statics

We define p-mechanical observables to be convolutions on the Heisenberg group. The next
subsection describes their multiplication and commutator as well as quantum and classical
representations. The Berezin quantization in the form of wavelet transform is considered in
section 3.2. This is developed in section 3.3 into a construction of p-observables out of either
quantum or classical ones.

3.1. Observables in p-mechanics, convolutions and commutators

In line with the standard quantum theory, we give the following definition.

Definition 3.1. Observables in p-mechanics (p-observables) are presented by operators on
L2(H

n).

Actually we will need here2 only operators generated by convolutions on L2(H
n). Let

dg be a left-invariant measure [19, section 7.1] on H
n, which coincides with the standard

Lebesgue measure on R
2n+1 in the exponential coordinates (s, x, y). Then a function k1 from

the linear space L1(H
n, dg) acts on k2 ∈ L2(H

n, dg) by the convolution as follows:

(k1 ∗ k2)(g) = cn+1
h

∫
H

n

k1(g1)k2
(
g−1

1 g
)

dg1

= cn+1
h

∫
H

n

k1
(
gg−1

1

)
k2(g1) dg1 (3.1)

where the constant ch is measured in units of the action and can be assumed equal to 1. Then
cn+1
h has units inverse to dg. Thus the convolution k1 ∗ k2 is measured in units that are a

product of the units for k1 and k2. The composition of two convolution operators K1 and
K2 with kernels k1 and k2 has the kernel defined by the same formula (3.1). Clearly two
products K1K2 and K2K1 could have different values due to non-commutativity of H

n but
are always measured in the same units. Thus we can find out how distinct they are from the
difference K1K2 − K2K1, which does not violate convention 2.1. This also produces the
inner derivations Dk of L1(H

n) by the commutator:

Dk : f �→ [k, f ] = k ∗ f − f ∗ k

= cn+1
h

∫
H

n

k(g1)
(
f

(
g−1

1 g
) − f

(
gg−1

1

))
dg1. (3.2)

Because we only consider observables that are convolutions on H
n, we can extend a unitary

representation ρh of H
n to a ∗-representation L1(H

n, dg) by the formula

[ρh(k)f ](q, p) = cn+1
h

∫
H

n

k(g)ρh(g)f (q, p) dg

= cn
h

∫
R

2n

(
ch

∫
R

k(s, x, y) e−2π ihs ds

)
e−2π i(qx+py)f

(
q − h

2
y, p +

h

2
x

)
dx dy.

(3.3)
2 More general operators are in use for a string-like version of p-mechanics, see section 5.2.3.



p-mechanics: an introduction 191

The last formula in the Schrödinger representation defines for h �= 0 a pseudodifferential
operator [11, 15, 32] on L2(R

n) (2.14), which is known to be quantum observable in the
Weyl quantization. For representations ρ(q,p) (2.15) an expression analogous to (3.3) defines
an operator of multiplication on O0 (2.17) by the Fourier transform of k(s, x, y):

ρ(q,p)(k) = k̂ (0, q, p) = cn+1
h

∫
H

n

k(s, x, y) e−2π i(qx+py) ds dx dy (3.4)

where the direct ˆ and inverse ˇ Fourier transforms are defined by the formulae:

f̂ (v) =
∫

Rm

f (u) e−2π iuv du and f (u) = (f̂ )ˇ(u) =
∫

Rm

f̂ (v) e2π ivu dv.

For reasons discussed in subsections 2.2 and 4.1 we regard the functions (3.4) on O0 as
classical observables. Again both representations ρh(k) and ρ(q,p)k are measured in the same
units as the function k.

From (3.3) it follows that ρh(k) for a fixed h �= 0 depends only on k̂s(h, x, y), which is
the partial Fourier transform s → h of k(s, x, y). Then the representation of the composition
of two convolutions depends only on

(k′ ∗ k)ŝ = ch

∫
R

e−2π ihscn+1
h

∫
H

n

k′(s ′, x ′, y ′)

× k

(
s − s ′ +

1

2
(xy ′ − yx ′), x − x ′, y − y ′

)
ds ′ dx ′ dy ′ ds

= cn
h

∫
R

2n

eπ ih(xy ′−yx ′)ch

∫
R

e−2π ihs ′
k′(s ′, x ′, y ′) ds ′ch

∫
R

e−2π ih(s−s ′+ 1
2 (xy ′−yx ′))

× k

(
s − s ′ +

1

2
(xy ′ − yx ′), x − x ′, y − y ′

)
ds dx ′ dy ′

= cn
h

∫
R

2n

eπ ih(xy ′−yx ′)k̂′
s(h, x ′, y ′)k̂s(h, x − x ′, y − y ′) dx ′ dy ′. (3.5)

Note that if we apply the Fourier transform (x, y) → (q, p) to the last expression (3.5),
we get the star product of k̂′ and k̂ known in deformation quantization, cf [36, (9)–(13)].
Consequently, the representation ρh([k′, k]) of the commutator (3.2) depends only on

[k′, k]ˆs = cn
h

∫
R

2n

(eiπh(xy ′−yx ′) − e−iπh(xy ′−yx ′))k̂′
s(−h, x ′, y ′)k̂s(−h, x − x ′, y − y ′) dx ′ dy ′

= 2icn
h

∫
R

2n

sin(πh(xy ′ − yx ′))k̂′
s(h, x ′, y ′)k̂s(h, x − x ′, y − y ′) dx ′ dy ′. (3.6)

The integral (3.6) turns out to be equivalent to the Moyal brackets [36] for the (full) Fourier
transforms of k′ and k. It is commonly accepted that the method of orbit is a mathematical side
of the geometric quantization [35]. Our derivation of the Moyal brackets in terms of orbits
shows that deformation and geometric quantizations are closely connected and both are not
very far from the original quantization of Heisenberg and Schrödinger. Yet one more of their
close relatives can be identified as the Berezin quantization [4], see the next subsection.

Remark 3.2. Expression (3.6) vanishes for h = 0 as can be expected from the commutativity
of representations (2.15). Thus it does not produce anything interesting on O0, which supports
the common negligence of this set.

Summing up, p-mechanical observables, i.e. convolutions on L2(H
n), are transformed

(1) by representations ρh (2.9) into quantum observables (3.3) with the Moyal bracket (3.6)
between them;
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(2) by representations ρ(q,p) (2.15) into classical observables (3.4).

We did not get meaningful brackets on classical observables yet; this will be done in
section 4.1.

3.2. Berezin quantization and wavelet transform

There is the following construction, known as the Berezin quantization [3, 4], allowing us to
assign a function to an operator (observable) and an operator to a function. The scheme is
based on the construction of the coherent states and can be derived from different sources
[29, 30]. We prefer the group-theoretic origin of Perelomov coherent states [30], which is
realized in (2.21). Following [3] we introduce the covariant symbol a(g) of an operator A on
F2(Oh) by the simple expression

a(g) = 〈Avg, vg〉 (3.7)

i.e. we get a map from the linear space of operators on F2(Oh) to a linear space of functions
on H

n. A map in the opposite direction assigns to a function ă(g) on H
n the linear operator A

on F2(Oh) by the formula

A = cn+1
h

∫
H

n

a
◦
(g)Pg dg where Pg is the projection Pgv = 〈v, vg〉vg. (3.8)

The function a
◦
(g) is called the contravariant symbol of the operator A (3.8).

The co- and contravariant symbols of operators are defined through the coherent states;
in fact both types of symbols are realizations [25, section 3.1] of the direct (2.23) and inverse
(2.22) wavelet transforms. Let us define a representation ρbh of the group H

n × H
n in the

space B(F2(Oh)) of operators on F2(Oh) by the formula

ρbh(g1, g2) : A �→ ρh

(
g−1

1

)
Aρh(g2) where g1, g2 ∈ H

n. (3.9)

According to the scheme from [25] for any state f0 onB(F2(Oh)), we get the wavelet transform
Wf0 : B(F2(Oh)) → C(Hn × H

n):

Wf0 : A �→ ă(g1, g2) = 〈ρbh(g1, g2)A, f0〉. (3.10)

The important particular case is given by f0 defined through the vacuum vector v0 (2.18)
by the formula 〈A, f0〉B(F2(Oh)) = 〈Av0, v0〉F2(Oh). Then the wavelet transform (3.10) produces
the covariant presymbol ă(g1, g2) of operator A. Its restriction a(g) = ă(g, g) to the diagonal
D of H

n ×H
n is exactly [25] the Berezin covariant symbol (3.7) of A. Such a restriction to the

diagonal is done without loss of information due to holomorphic properties of ă(g1, g2) [3].
Another important example of the state f0 is given by the trace

〈A, f0〉 = Tr A = hn

∫
R

2n

〈Av(x,y), v(x,y)〉F2(Oh) dx dy (3.11)

where coherent states v(x,y) are again defined in (2.21). Operators ρbh(g, g) from the diagonal
D of H

n × H
n trivially act on the wavelet transform (3.10) generated by the trace (3.11) since

the trace is invariant under ρbh(g, g). According to the general scheme [25] we can consider
reduced wavelet transform to the homogeneous space H

n × H
n/D instead of the entire group

H
n × H

n. The space H
n × H

n/D is isomorphic to H
n with the embedding H

n → H
n × H

n

given by g �→ (g; 0). Furthermore the centre Z of H
n acts trivially in the representation ρbh as

usual. Thus the only essential part of H
n ×H

n/D in the wavelet transform is the homogeneous
space 	 = H

n/Z. A Borel section s : 	 → H
n × H

n in the principal bundle G → 	 can be
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defined as s : (x, y) �→ ((0, x, y); (0, 0, 0)). We got the reduced realization Wr of the wavelet
transform (3.10) of the form

Wr : A �→ ăr (x, y) = 〈ρbh(s(x, y))A, f0〉
= Tr(ρh((0, x, y)−1)A) (3.12)

= hn

∫
R

2n

〈ρh((0, x, y)−1)Av(x ′,y ′), v(x ′,y ′)〉F2(Oh) dx ′ dy ′

= hn

∫
R

2n

〈Av(x ′,y ′), v(x,y)·(x ′,y ′)〉F2(Oh) dx ′ dy ′. (3.13)

Formula (3.12) is the principal ingredient of the inversion formula for the Heisenberg group
[11, chapter 1, (1.60)] and [33, chapter 1, theorem 2.7] , which reconstructs kernels of
convolutions k(g) out of operators ρh(k). Therefore if we define a mother wavelet to be the
identity operator I, the inverse wavelet transform (cf (2.22) will be

Mra = hn

∫
R

2n

a(x, y)ρbh(s((0, x, y)−1))I dx dy

= hn

∫
R

2n

a(x, y)ρh(0, x, y) dx dy. (3.14)

The inversion formula for H
n ensures the following proposition.

Proposition 3.3. The composition Mr ◦ Wr is the identity map on the representations ρh(k)

of convolution operators on Oh.

Example 3.4. The wavelet transform Wr (3.13) applied to the quantum coordinate
Q = dρh(X), momentum P = dρh(Y ) (see (2.11)) and the energy function of the harmonic
oscillator (c1Q

2 + c2P
2)/2 produces the distributions on R

2n:

Q �→ 1

2π i
δ(1)(x)δ(y)

P �→ 1

2π i
δ(x)δ(1)(y)

1

2
(c1Q

2 + c2P
2) �→ − 1

8π2
(c1δ

(2)(x)δ(y) + c2δ(x)δ(2)(y))

where δ(1) and δ(2) are the first and second derivatives of the Dirac delta function δ respectively.
The constants c1 and c2 have units M/T 2 and 1/M correspondingly. We will use these
distributions later in example 3.7.

3.3. From classical and quantum observables to p-mechanics

It is commonly accepted that we cannot deal with quantum mechanics directly and thus
classical dynamics serves as an unavoidable intermediate step. A passage from classical
observables to quantum ones—known as quantization—is a huge field with many concurring
approaches (geometric, deformation, Weyl, Berezin, etc quantizations) each having its own
merits and demerits. Similarly one has to construct p-mechanical observables starting from
classical or quantum ones by some procedure (should it be named ‘p-mechanization’?), which
we are about to describe.

The transition from a p-mechanical observable to the classical one is given by formula
(3.4), which in turn is a realization of the inverse wavelet transform (2.22):

ρ(q,p)k = k̂(0, q, p) = cn+1
h

∫
H

n

k(s, x, y) e−2π i(qx+py) ds dx dy. (3.15)
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Similar to the case of quantization, the classical image ρ(q,p)k (3.15) contains only partial
information about p-observable k unless we make some additional assumptions. Let us start
from a classical observable c(q, p) and construct the corresponding p-observable. From the
general consideration (see [25] and section 2.3) we can partially invert formula (3.15) by the
wavelet transform (2.23):

č(x, y) = [W0c](x, y) = 〈cv(0,0), v(x,y)〉 = cn
h

∫
R

2n

c(q, p) e2π i(qx+py) dq dp (3.16)

where v(x,y) = ρ(q,p)v(0,0) = e−2π i(qx+py).
However, the function č(x, y) (3.16) is not defined on the entire H

n. The natural domain of
č(x, y) according to the construction of the reduced wavelet transform [25] is the homogeneous
space 	 = G/Z, where G = H

n and Z is its normal subgroup of central elements (s, 0, 0).
Let s : 	 → G be a Borel section in the principal bundle G → 	, which is used in the
construction of the induced representation, see [19, section 13.1]. For the Heisenberg group
[25, ex. 4.3] it can be simply defined as s : (x, y) ∈ 	 �→ (0, x, y) ∈ H

n. One can naturally
transfer functions from 	 to the image s(	) of the map s in G. However, the range s(	) of s
often has (particularly for H

n) a zero Haar measure in G. Probably the two simplest possible
ways out are:

(1) To increase the ‘weight’ of function c̃(s, x, y) vanishing outside the range s(	) of s by
a suitable Dirac delta function on the subgroup Z. For the Heisenberg group this can be
done, for example, by the map

E : č(x, y) �→ c̃(s, x, y) = δ(s)č(x, y) (3.17)

where č(x, y) is given by the inverse wavelet (Fourier) transform (3.16). As we will see
in proposition 3.6 this is related to the Weyl quantization and the Moyal brackets.

(2) To extend the function č(x, y) to the entire group G by a tensor product with a suitable
function on Z, for example e−s2

:

č(x, y) �→ c̃(s, x, y) = e−s2
č(x, y).

In order to get the correspondence principle between classical and quantum mechanics
(cf example 2.3), the function on Z has to satisfy some additional requirements. For
H

n it should vanish for s → ±∞, which is fulfilled for both e−s2
and δ(s) from the

previous item. In this way we get infinitely many essentially different quantizations with
non-equivalent deformed Moyal brackets between observables.

There are other more complicated possibilities not mentioned here, which can be of some use
if additional information or assumptions are used to extend functions from 	 to G. We will
focus here only on the first ‘minimalistic’ approach from the two listed above.

Example 3.5. The composition of the wavelet transform W0 (3.16) and the map E (3.17)
applied to the classical coordinate, momentum and the energy function of a harmonic oscillator
produces the following distributions on H

n:

q �→ 1

2π i
δ(s)δ(1)(x)δ(y) (3.18)

p �→ 1

2π i
δ(s)δ(x)δ(1)(y) (3.19)

1

2
(c1q

2 + c2p
2) �→ − 1

8π2
(c1δ(s)δ

(2)(x)δ(y) + c2δ(s)δ(x)δ(2)(y)) (3.20)
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where δ(1), δ(2), c1 and c2 are defined in example 3.4. We will use these distributions later in
the example 4.3.

If we apply the representation ρh (3.3) to the function c̃(s, x, y) (3.17) we will get the
operator on F2(Oh):

Qh(c) = cn+1
h

∫
H

n

c̃(s, x, y)ρh(s, x, y) ds dx dy

= cn+1
h

∫
R

2n

∫
R

δ(s)č(x, y) exp(s dρh(S) + x dρh(X) + y dρh(Y )) ds dx dy

= cn+1
h

∫
R

δ(s) e−2π ish ds

∫
R

2n

č(x, y) exp(x dρh(X) + y dρh(Y )) dx dy

= cn
h

∫
R

2n

č(x, y) exp(x dρh(X) + y dρh(Y )) dx dy (3.21)

where the last expression is exactly the Weyl quantization (the Weyl correspondence
[11, section 2.1]) if the Schrödinger realization with dρh(X) = q and dρh(Y ) = ih∂q on
L2(R

n) is chosen for ρh. Thus we demonstrate the following proposition.

Proposition 3.6. The Weyl quantization Qh (3.21) is the composition of the wavelet transform
(3.16), the extension E (3.17) and the representation ρh (2.9):

Qh = ρh ◦ E ◦ W0. (3.22)

A similar construction can be carried out if we have a quantum observable A and wish
to recover a related p-mechanical object. The wavelet transform Wr (3.12) maps A into the
function a(x, y) defined on 	 and we again face the problem of extension of a(x, y) to the
entire group H

n. If it can once more be solved as in the classical case by the tensor product
with the delta function δ(s), then we get the following formula:

A �→ a(s, x, y) = E ◦ Wr (A) = hnδ(s)

∫
R

2n

〈Av(x ′,y ′), v(x,y)·(x ′,y ′)〉F2(Oh) dx ′ dy ′.

We can apply to this function a(s, x, y) the representation ρ(q,p) and obtain classical
observables ρ(q,p)(a). For a reasonable quantum observable A, its classical image
ρ(q,p) ◦ E ◦ Wr (A) will coincide with its classical limit Ch→0A:

Ch→0 = ρ(q,p) ◦ E ◦ Wr (3.23)

which is expressed here through integral transformations and does not explicitly use any
limit transition for h → 0. Figure 2 illustrates various transformations between quantum,
classical and p-observables. Besides the mentioned decompositions (3.22) and (3.23) there
are presentations of identity maps on classical and quantum spaces correspondingly:

Ic = ρ(q,p) ◦ E ◦ W0 Ih = ρh ◦ E ◦ Wh.

Example 3.7. The wavelet transform Wr applied to the quantum coordinate Q, momentum P
and the energy function of a harmonic oscillator (c1Q

2 + c2P
2)/2 was calculated in example

3.4. The composition with the above map E yields the following distributions:

Q �→ 1

2π i
δ(s)δ(1)(x)δ(y)

P �→ 1

2π i
δ(s)δ(1)(x)δ(y)

1

2
(c1Q

2 + c2P
2) �→ − 1

2π2
(c1δ(s)δ

(2)(x)δ(y) + c2δ(s)δ(x)δ(2)(y))

which are exactly the same as in example 3.5.
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p-observables
on the

group n

Functions
on the space
Ω = n/Z

Quantum
observables
on F2(Oh)

Classical
observables

on O0

Qh Ch→0

Wr

W0

E

ρh

(q,p)ρ

Figure 2. The relations between Qh (the Weyl quantization from classical mechanics to quantum);
Ch→0 (the classical limit h → 0 of quantum mechanics); ρh and ρ(q,p) (unitary representations
of Heisenberg group H

n); Wr and W0 (wavelet transforms defined in (3.12) and (3.16)) and
E (extension of functions from 	 = H

n/Z to the whole group H
n). Note the relations

Qh = ρh ◦ E ◦ W0 and Ch→0 = ρ(q,p) ◦ E ◦ Wr .

4. p-mechanics: dynamics

We introduce the p-mechanical brackets, which suit all essential physical requirements
and have a non-trivial classical representation coinciding with the Poisson brackets. A
consistent p-mechanical dynamic equation is given in subsection 4.2 and is analysed for the
harmonic oscillator. Symplectic automorphisms of the Heisenberg group produce symplectic
symmetries of p-mechanical, quantum and classical dynamics in subsection 4.3.

4.1. p-mechanical brackets on H
n

Having observables as convolutions on H
n, we need a dynamic equation for their time

evolution. To this end we seek a time derivative generated by an observable associated
with energy.

Remark 4.1. The first candidate is the derivation obtained from commutator (3.2). However,
the straight commutator suffers from at least two failures:

(1) It cannot produce any dynamics on O0 (2.17), see remark 3.2.
(2) It violates convention 2.1 as indicated below.

As is well known the classical energy is measured in ML2/T 2 and so is the p-mechanical
energy E. Consequently, the commutator [E, ·] (3.2) with the p-energy has units ML2/T 2

whereas the time derivative should be measured in 1/T , i.e. the mismatch is in units of action
ML2/T .

Fortunately, there is a possibility of fixing both the above defects of the straight
commutator at the same time. Let us define a multiple A of a right inverse operator to
the vector field S (2.3) on H

n by its actions on exponents—characters of the centre Z ∈ H
n:

SA = 4π2I where A e2π ihs =
{

2π
ih e2π ihs if h �= 0

4π2s if h = 0.
(4.1)

An alternative definition of A as the convolution with a distribution is given in [27].
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We can extend A by the linearity to the entire space L1(H
n). As a multiplier of a right

inverse to S, the operator A is measured in T/(ML2)—exactly what we need to correct the
second of the above mentioned defects of the straight commutator. Thus we introduce [27]
the modified convolution operation 
 on L1(H

n):

k′ 
 k = (k′ ∗ k)A (4.2)

and the associated modified commutator (p-mechanical brackets):

{[k′, k]} = [k′, k]A = k′ 
 k − k 
 k′. (4.3)

Obviously (4.3) is a bilinear antisymmetric form on the convolution kernels. It was also
demonstrated in [27] that p-mechanical brackets satisfy the Leibniz and Jacobi identities.
They are all important for a consistent dynamics [8] along with the dimensionality condition
given in the beginning of this subsection.

From (3.3) one gets ρh(Ak) = 2π
ih ρh(k) for h �= 0. Consequently the modification of the

commutator for h �= 0 is only slightly different from the original one:

ρh{[k′, k]} = 1

ih̄
[ρh(k

′), ρh(k)] where h̄ = h

2π
�= 0. (4.4)

The integral representation of the modified commutator kernel becomes (cf (3.6))

{[k′, k]}ˆs = cn
h

∫
R

2n

4π

h
sin(πh(xy ′ − yx ′))k̂′

s(h, x ′, y ′)k̂s(h, x − x ′, y − y ′) dx ′ dy ′ (4.5)

where we can understand the expression under the integral as

4π

h
sin(πh(xy ′ − yx ′)) = 4π2

∞∑
k=1

(−1)k+1(πh)2(k−1) (xy ′ − yx ′)2k−1

(2k − 1)!
. (4.6)

This makes the operation (4.5) for h = 0 significantly distinct from the vanishing integral
(3.6). Indeed, it is natural to assign the value 4π2(xy ′ − yx ′) to (4.6) for h = 0. Then the
integral in (4.5) becomes the Poisson brackets for the Fourier transforms of k′ and k defined
on O0 (2.17):

ρ(q,p){[k′, k]} = ∂k̂′(0, q, p)

∂q

∂k̂(0, q, p)

∂p
− ∂k̂′(0, q, p)

∂p

∂k̂(0, q, p)

∂q
. (4.7)

The same formula is obtained [27, proposition 3.5] if we directly calculate ρ(q,p){[k′, k]}
rather than resolve the indeterminacy for h = 0 in (4.6). This means the continuity of our
construction at h = 0 and represents the correspondence principle between quantum and
classical mechanics.

We saw that the remedy of the second failure of commutator in remark 4.1 (which was
our duty according to convention 2.1) by the anti-derivative (4.1) also improves the first defect
(which is a very pleasant and surprising bonus). There are probably much simpler ways to
fix the dimensionality of commutator ‘by hand’. However, not all of them obviously would
produce the Poisson brackets on O0 as the anti-derivative (4.1).

We arrived at the following observation: Poisson brackets and inverse of the Planck
constant 1/h have the same dimensionality because they are images of the same object (anti-
derivative (4.1)) under different representations (2.9) and (2.15) of the Heisenberg group.

Note that functions X = δ(s)δ(1)(x)δ(y) and Y = δ(s)δ(x)δ(1)(y) (see (3.18) and (3.19))
on H

n are measured in units of L and ML2/T (inverse to x and y) correspondingly because they
are respective derivatives of the dimensionless function δ(s)δ(x)δ(y). Then the p-mechanical
brackets {[X, ·]} and {[Y, ·]} with these functions have dimensionality of T/(ML2) and
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1/L correspondingly. Their representations ρ∗{[X, ·]} and ρ∗{[Y, ·]} (for both types of
representations ρh and ρ(q,p)) are measured by L and ML2/T and are simple derivatives:

ρ∗{[X, ·]} = ∂

∂p
ρ∗{[Y, ·]} = ∂

∂q
. (4.8)

Thus ρ∗{[X, ·]} and ρ∗{[Y, ·]} are generators of shifts on both types of orbits Oh and O0

independent of the value of h.

4.2. p-mechanical dynamic equation

Since the modified commutator (4.3) with a p-mechanical energy has the dimensionality
1/T —the same as the time derivative—we introduce the dynamic equation for an observable
f (s, x, y) on H

n based on that modified commutator as follows:
df

dt
= {[f,E]}. (4.9)

Remark 4.2. It is a general tendency to make Poisson brackets or a quantum commutator out
of any two observables and say that they form a Lie algebra. However, there is a physical
meaning to do that if at least one of two observables is an energy, coordinate or momentum:
in these cases the brackets produce the time derivative (4.9) or corresponding shift generators
(4.8) [16] of the other observable.

A simple consequence of the previous consideration is that the p-dynamic equation (4.9)
is reduced

(1) by the representation ρh, h �= 0 (2.9) on F2(Oh) (2.7) to Moyal’s form of Heisenberg
equation [36, (8)] based on the formulae (4.4) and (4.5):

dρh(f )

dt
= 1

ih̄
[ρh(f ),Hh] where the operator Hh = ρh(E) (4.10)

(2) by the representations ρ(q,p) (2.15) on O0 (2.17) to Poisson’s equation [2, section 39]
based on the formula (4.7):

df̂

dt
= {f̂ , H } where the function H(q, p) = ρ(q,p)E = Ê(0, q, p). (4.11)

The same connections are true for the solutions of the three equations (4.9)–(4.11).

Example 4.3 (harmonic oscillator, of course) [27]. Let the p-mechanical energy function of
a harmonic oscillator be as those obtained in examples 3.5 and 3.7:

E(s, x, y) = − 1

8π2
(c1δ(s)δ

(2)(x)δ(y) + c2δ(s)δ(x)δ(2)(y)). (4.12)

Then the p-dynamic equation (4.9) on H
n obeying convention 2.1 is

d

dt
f (t; s, x, y) =

n∑
j=1

(
c2xj

∂

∂yj

− c1yj

∂

∂xj

)
f (t; s, x, y). (4.13)

Solutions to the above equation are well known to be rotations in each of (xj , yj ) planes given
by

f (t; s, x, y) = f0

(
s, x cos(

√
c1c2t) −

√
c1

c2
y sin(

√
c1c2t),

×
√

c2

c1
x sin(

√
c1c2t) + y cos(

√
c1c2t)

)
. (4.14)
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h < 0

q
R 2nh = 0

h

h > 0

Figure 3. Dynamics of the harmonic oscillator in the adjoint space h∗
n is given by the identical

linear symplectomorphisms of all orbits Oh and O0. The vertical dotted string is uniformly rotating
in the ‘horizontal’ plane around the h-axis without any dynamics along the ‘vertical’ direction.

This expression respects convention 2.1. Since the dynamics on L2(H
n) is given by a

symplectic linear transformation of H
n, its Fourier transform (2.10) to L2(h

∗
n) is the adjoint

symplectic linear transformation of orbits Oh and O0 in h∗
n, see figure 3.

The representation ρh transforms the energy function E (4.12) into the operator

Hh = − 1

8π2
(c1Q

2 + c2P
2) (4.15)

where Q = dρh(X) and P = dρh(Y ) are defined in (2.11). The representation ρ(q,p)

transforms E into the classical Hamiltonian

H(q, p) = c1

2
q2 +

c2

2
p2. (4.16)

The p-dynamic equation (4.9) of form (4.13) is transformed by the representations ρh into
the Heisenberg equation

d

dt
f (t;Q,P ) = 1

ih̄
[f,Hh] where

1

ih̄
[f,Hh] = c1p

∂f

∂q
− c2q

∂f

∂p
(4.17)

defined by the operator Hh (4.15). The representation ρ(q,p) produces the Hamilton equation

d

dt
f (t; q, p) = c1p

∂f

∂q
− c2q

∂f

∂p
(4.18)

defined by the Hamiltonian H(q, p) (4.16). Finally, to get the solution for equations (4.17) and
(4.18) it is enough to apply representations ρh and ρ(q,p) to the solution (4.14) of p-dynamic
equation (4.13).

Summing up we can rephrase the title of [36]: quantum and classical mechanics live and
work together on the Heisenberg group and are separated only in irreducible representations
of H

n.

4.3. Symplectic invariance from automorphisms of H
n

Let A : R
2n → R

2n be a linear symplectomorphism [2, section 41] and [11, section 4.1], i.e. a
map defined by 2n × 2n matrix:

A :

(
x

y

)
�→

(
a b

c d

)(
x

y

)
=

(
ax + by

cx + dy

)
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preserving the symplectic form (2.2):

ω(A(x, y);A(x ′, y ′)) = ω(x, y; x ′, y ′). (4.19)

All such transformations form the symplectic group Sp(n). Convention 2.1 implies that sub-
blocks a and d of A have to be dimensionless while b and c have to be of reciprocal dimensions
M/T and T/M respectively.

It follows from identities (4.19) and (2.1) that the linear transformation α : H
n → H

n

such that α(s, x, y) = (s, A(x, y)) is an automorphism of H
n. Let us also denote by α̃ = α̃A

a unitary transformation of L2(H
n) in the form

α̃(f )(s, x, y) =
√

det af (s, A(x, y))

which is well defined [11, section 4.2] on the double cover S̃p(n) of the group Sp(n). The
correspondence A �→ α̃A is a linear unitary representation of the symplectic group in L2(H

n).
One can also check the intertwining property

λl(r)(g) ◦ α̃ = α̃ ◦ λl(r)(α(g)) (4.20)

for the left (right) regular representations (2.5) of H
n.

Because α is an automorphism of H
n the map α∗ : k(g) �→ k(α(g)) is an automorphism of

the convolution algebra L1(H
n) with the multiplication ∗ (3.1), i.e. α∗(k1) ∗ α∗(k2) = α∗(k1 ∗

k2). Moreover, α∗ commutes with the anti-derivative A (4.1), thus α∗ is also an automorphism
of L1(H

n) with the modified multiplication 
 (4.2), i.e. α∗(k1) 
 α∗(k2) = α∗(k1 
 k2). By
linearity, we can extend the intertwining property (4.20) to the convolution operator K as
follows:

α∗K ◦ α̃ = α̃ ◦ K. (4.21)

Since α is an automorphism of H
n it fixes the unit e of H

n and its differential dα : hn → hn

at e is given by the same matrix as α in the exponential coordinates. Obviously, dα is an
automorphism of the Lie algebra hn. By the duality between hn and h∗

n we obtain the adjoint
map dα∗ : h∗

n → h∗
n defined by the expression

dα∗ : (h, q, p) �→ (h,At (q, p)) (4.22)

where At is the transpose of A. Obviously, dα∗ preserves any orbit Oh (2.7) and maps the
orbit O(q,p) (2.8) to OAt (q,p).

Identity (4.22) indicates that both representations ρh and (ρh ◦ α)(s, x, y) =
ρh(s, A(x, y)) for h �= 0 correspond to the same orbit Oh. Thus they should be equivalent, i.e.
there is an intertwining operator UA : F2(Oh) → F2(Oh) such that U−1

A ρhUA = ρh ◦ α. Then
the correspondence σ : A �→ UA is a linear unitary representation of the double cover S̃p(n)

of the symplectic group called the metaplectic representation [11, section 4.2] and [13].
Thus we have the following proposition.

Proposition 4.4. The p-mechanical brackets are invariant under the symplectic
automorphisms of H

n: {[α̃k1, α̃k2]} = α̃{[k1, k2]}. Consequently the dynamic equation (4.9)
has symplectic symmetries which are reduced

(1) by ρh, h �= 0 on Oh (2.7) to the metaplectic representation in quantum mechanics;
(2) by ρ(q,p) on O0 (2.17) to the symplectic symmetries of classical mechanics [2, section 38].

Combining intertwining properties of all three components (3.22) in the Weyl quantization
we get the following corollary.

Corollary 4.5. The Weyl quantization Qh (3.21) is the intertwining operator between classical
and metaplectic representations.
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Heisenberg group

Phase space (h = 0)

Parameter h �= 0

(q,p)

ρ

ρ

h

R 2n

H
n

Figure 4. Automorphisms of H
n generated by the symplectic group Sp(n) do not mix

representations ρh with different Planck constants h and act by the metaplectic representation
inside each of them. In contrast, those automorphisms of H

n act transitively on the set of one-
dimensional representations ρ(q,p) joining them into the tangent space of the classical phase space
R

2n.

5. Conclusions

5.1. Discussion

Our intention is to demonstrate that the complete representation theory of the Heisenberg group
H

n, which includes one-dimensional commutative representations, is a sufficient language for
both classical and quantum theory.

It is natural to describe the complete set of unitary irreducible representations by the orbit
method of Kirillov. The analysis carried out in section 2.2 and illustrated in figure 1 shows that
the position of one-dimensional representations ρ(q,p) within the unitary dual of H

n relates
them to classical mechanics. Various connections of infinite dimensional representations ρh

of H
n to quantum mechanics have been known for a long time.
Convolution operators on H

n are a natural class to be associated with physical observables.
They are reduced by infinite dimensional representations ρh to the pseudodifferential operators,
which are observables in the Weyl quantization. The one-dimensional representations ρ(q,p)

map convolutions onto classical observables—functions on the phase space. The wavelet
technique allows us to transform these three types of observables into each other, which is
illustrated in figure 2.

A nontrivial dynamics in the phase space—the space of one-dimensional representations
of H

n—could be obtained from the commutator on H
n with the help of the anti-derivative

operator A (4.1). The p-mechanical dynamic equation (4.9) based on the operator A possesses
all desirable properties for the description of a physical time evolution and its solution gives
both classical and quantum dynamics. See figure 3 for a familiar dynamics of the harmonic
oscillator.

Finally, the symplectic automorphisms of the Heisenberg group preserve the dynamic
equation (4.9) and all its solutions. In representations of the Heisenberg group this reduces to
the symplectic invariance of classical mechanics and the metaplectic invariance of the quantum
description. Moreover, the symplectic transformations act transitively on the set O0 (2.17)
of one-dimensional representations supporting its p-mechanical interpretation as the classical
phase space, see figure 4.
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5.2. Further developments

The present paper deals only with elementary aspects of p-mechanics. The notion of physical
states in p-mechanics is considered in [6, 7], where its usefulness for a forced oscillator
is demonstrated. Paper [7] also discusses the connection of p-mechanics and contextual
interpretation [18]. Our study is a part of the Erlangen-type approach [24, 26] in non-
commutative geometry. It could be extended in several directions.

5.2.1. Quantum–classical interaction. The long standing discussion [8, 31] about quantum–
classical interaction can be treated as follows. Let B be a nilpotent step two Heisenberg-like
group of elements (s1, s2; x1, y1; x2, y2) with the only non-trivial commutators in the Lie
algebra (cf (2.4) as follows:

[Xi, Yj ] = δijSi .

Thus B has the two-dimensional centre (s1, s2, 0, 0, 0, 0) and the adjoint space of characters of
B is also two dimensional. We can regard it as being spanned by two different Planck constants
h1 and h2. There is a possibility of studying the case h1 �= 0 and h2 = 0, which correspond to
a quantum behaviour of coordinates (x1, y1) and a classical dynamics in (x2, y2). This study
was initiated in [31] but oversaw some homological aspects of the construction and is not
satisfactorily completed yet.

5.2.2. Quantum field theory. Mathematical formalism of quantum mechanics uses complex
numbers in order to provide unitary infinite dimensional representations of the Heisenberg
group H

n. In a similar way the De Donder–Weyl formalism for classical field theories
[17] requires Clifford numbers [14] for their quantization. It was recently realized [9] that
the appearance of Clifford algebras is induced by the Galilean group—a nilpotent step two
Lie group with multi-dimensional centre. In the one-dimensional case an element of the
Galilean group is (s1, . . . , sn, x, y1, . . . , yn) with corresponding Lie algebra described by the
non-vanishing commutators

[X, Yj ] = Sj j = 1, 2, . . . , n.

This corresponds to several momenta y1, y2, . . . , yn adjoint to a single field coordinate x
[17]. For field theories it is worth [28] considering Clifford valued representations induced
by Clifford valued ‘characters’ exp(2π(e1h1s1 + · · · + enhnsn)) of the centre, where e1, . . . , en

are imaginary units spanning the Clifford algebra. The associated Fock spaces were described
in [9]. In [28] we quantize the De Donder–Weyl field equations (similar to our consideration
in subsection 4.1) with the help of composed anti-derivative operator A = ∑n

1 eiAi , where
SiAi = 4π2I . There are important mathematical and physical questions related to the
construction, notably the role of the Dirac operator [12], which deserve further careful
consideration.

5.2.3. String theory. There is a possibility of using a p-mechanical picture for a string-like
theory. Indeed the p-dynamics of a harmonic oscillator as presented in example 4.3 and
figure 3 consists of uniform rotation of lines around the h-axis—one can say strings—with the
same (q, p) coordinates but different values of the Planck constant h.

In the case of a more general energy, which is still however given by a convolution on
H

n, the dynamics can be more complicated. For example, it may not correspond to a point
transformation of the adjoint space h∗

n. Alternatively, a generic point transformation may
transform a straight line (h, q0, p0) with fixed (q0, p0) ∈ R

2n and variable h into a generic
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curve transversal to all (q, p)-planes. However, all spaces F2(Oh) are invariant under any
p-dynamics generated by a convolution on H

n.
However, if energy is given by an arbitrary operator on L2(H

n) [10, 22], spaces F2(Oh)

for different h are no longer invariant during the evolution and could be mixed together. This
also opens a possibility of longitudinal dynamics of strings along the h-axis. It may seem
strange to have a dynamics along h which is a constant, and not a variable. However, there
is a duality [34] between the ‘Planck constant’ h and the ‘tension of string’ α′. Dualities and
symmetries between h and α′ can be reflected in dynamics which mixes spaces F2(Oh) with
different h.
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